Introduction

- Ground water samples were collected from Abe’s Creek and Jefferson’s Run at Abernathy Field Station (AFS) in Washington, PA.
- Titrimetric, colorimetric, and gravimetric analyses were performed to determine the alkalinity, hardness, iron, phosphorus, and sulfur levels.
- AFS is of interest due to its close proximity to both a natural gas extraction station and a longwall coal mining operation.
- The natural gas extraction derives from the Marcellus Shale, which extends through New York, Pennsylvania, West Virginia, and Ohio, and holds one of the most substantial natural gas reserves.
- Problems with the gas extraction arise from drilling techniques, including the use of large amounts of fresh water and fracking fluid, a chemical-rich mixture used to widen cracks in the rock.
- At the Marcellus Shale, horizontal wells are drilled, using large amounts of water and sand to blast the shale and create fractures; the water is then pumped out of the ground. However, some of the polluted water remains in the fractures and can leach back into the ground water, tainting it with harmful chemicals.
- Longwall coal mining is a high-extraction mining method used to extract underground coal beds.
- Since longwall mining utilizes planned subsidence, there are profound social and environmental impacts.

The Gravimetric Determination of Sulfur in Water

- Sulfur is naturally present as sulfate (SO\(_4^{2-}\)) in water.
- It also comes from mine drainage wastes through pyritic oxidation.
- High levels can cause a bitter taste and have laxative effects, resulting in diarrhea.
- Elevated levels can endanger an ecosystem by altering the sediment composition, wiping out native plants that once thrived.
- Reaction: SO\(_4^{2-}\) + Ba\(^{2+}\) → BaSO\(_4\)\(_{2-}\)

Titrimetric Determination of the Alkalinity of Water

- Alkalinity is the measure of water’s ability to neutralize an acid.
- It is determined by titrating all of titratable bases in water (OH\(^-\), CO\(_3^{2-}\), and HCO\(_3^-\)).
- Diverse aquatic life is best supported by an alkalinity between 100-120 mg/L CaCO\(_3\).
- CO\(_3^{2-}\) + H\(^+\) → HCO\(_3^-\)
- HCO\(_3^-\) + H\(^+\) → CO\(_2\) + H\(_2\)O

The Spectrophotometric Determination of Iron in Water

- Iron is measured by its absorption at 810 nm.
- These measurements reflect the concentration of iron, which is naturally present in Earth’s soil and water.
- Elevated levels from local mining operations can cause plumbing, laundry, and cooking utensil stains, and it can result in bad tastes and food residues.
- Typical values: 0.1-10 mg/L in groundwater, 0.7 mg/L in stream water.

The Spectrophotometric Determination of Phosphorus

- Phosphorus occurs in natural and waste waters almost solely as phosphates.
- It also comes from water treatment, laundry products, fertilizers, and sewage (body wastes and food residues).
- This element is essential to organism growth; too much can cause an excess of algae and other photosynthetic organisms.

<table>
<thead>
<tr>
<th>Collection Site</th>
<th>Number of Trials</th>
<th>Phosphorus Avg (± Std dev) mg/L P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abe’s Creek</td>
<td>6</td>
<td>-0.38 ± 0.41</td>
</tr>
<tr>
<td>Jefferson’s Run</td>
<td>4</td>
<td>-0.18 ± 0.41</td>
</tr>
</tbody>
</table>

Conclusions

- “Low” levels of sulfate were detected; however, this method cannot be considered very reliable.
- While the detection limit for sulfur was reported to be 10 mg/L, there were other issues with the lab. The ashless filter paper did not completely combust, resulting in higher readings and thus higher standard deviations.
- The alkalinity levels were found to be reasonable for this area of the state.
- Research has shown that areas in which the soil is constantly disturbed have higher alkalinity contents. Moreover, coal forms in sedimentary rock, which naturally has more CaCO\(_3\), and this area, as mentioned, is near to a coal mine.
- The water was found to be in the classification of hard water. EDTA was problematic as the titrant for these determinations.
- The iron levels were on the lower end of the expected range. The method limit for both iron and phosphorus was reported to be 0.050 mg/L.
- It was difficult to detect the iron levels, as they were essentially zero, and there were several negative readings. This led to the large standard deviation. Similarly, the phosphorus levels were undetectable with this method.
- Considering that this was the first year of the study, methods need to be refined to provide more accurate data. Additional years’ data are needed for comparison purposes. This study, however, establishes a firm base for continuing research.

Acknowledgements

Dr. Jennifer L. Logan, Department of Chemistry, Washington & Jefferson College
Spring 2009 Analytical Chemistry students, Washington & Jefferson College
This work was supported in part by Undergraduate Science Program Education Grant No. 52006323 from the Howard Hughes Medical Institute to Washington & Jefferson College
This work was also supported by the Margaret A. Cargill Grant for Environmental Studies.

References