Analysis of PCK1 Expression in *Saccharomyces cerevisiae* Strain S288C During the Diauxic Shift

Kayle Campbell, Judy Nicholson and Dr. Alice G. Lee

Washington and Jefferson College, Department of Biology, Washington, Pennsylvania

Biology 201 Spring 2010

Introduction

Microarrays are a very efficient lab technique in that they are quite cost-efficient as they enable scientists to study the expression of thousands of genes at a time. This technique is now very commonly used in molecular biology and medical labs, since it allows entire genomes to be explored at once (Hedge et al. 2000). This is a much more sophisticated technique compared to that of Northern Blotting, which only allows one gene or DNA expression product to be explored at a time (Weaver, 2008).

Microarrays can be used for various comparative analyses of anything from different gene expression levels in tumors used to design more personalized treatments for cancer patients, to looking at the changes in gene expression levels under specific and controlled growth conditions. These types of analyses are better known as gene expression profiling. They can also be employed to determine the relatedness of different species (Hedge et al., 2000; Schena, et al., 1995).

Yeast, Saccharomyces cerevisiae, is a model organism whose genome has been previously sequenced. It is fascinating that under aerobic and anaerobic growth conditions, the genes of this organism are expressed at different levels. It is the induction and repression of certain genes that allow scientists to investigate what is occurring during specific conditions and conditions of growth. It is intriguing to look at well known genes such as phosphoenoxypropyrate carboxykinase (PCK1), an enzyme that is key to gluconeogenesis. PCK1 is an enzyme in yeast that catalyzes early gluconeogenic reactions while its transcription is repressed by glucose (Haurie, et al., 2001).

The simplicity of using a microarray is something that can be done even in the undergraduate laboratory. In this experiment, *Saccharomyces cerevisiae,* gene expression was explored during the diauxic shift. When the yeast switch from anaerobic metabolism to aerobic metabolism, a shift in gene expression is observed and various genes are induced or repressed. Information gained from such observations can provide valuable insight for scientists seeking to determine certain genes’ biological roles in the organism (DeRisi, et al., 1997).

Materials & Methods

Culturing Yeast

Yeast, strain S288C, was used in this experiment and two samples were grown by Dr. Lee in a shaking incubator in yeast peptone dextrose (YPD) medium at 30 °C. The yeast employing anaerobic metabolism were grown for 12.75 hrs at 250 rpm at 30 °C, while the yeast employing aerobic metabolism were grown for 17 hrs at 250 rpm at 30 °C. The cells were removed, the absorbance was checked, and the yeast cultures were pelleted in a centrifuge. The experimental sample (aerobic metabolism) required a repeat of the centrifugation step and absorbance was once again observed. 2.0 × 10^6 cells were isolated from the log phase of each pellet.

Preparing the Total Yeast RNA

The total yeast RNA was then isolated using an Ambion RiboPure Yeast Kit (Ambion, Austin, Texas). The yeast pellets were resuspended, transferred into a tube containing cold Zirconia beads, and subsequently vortexed to mix the yeast solution throughout the bead chamber. Binding Buffer was then used to bind the RNA to the beads. Several sub-saturating wash solutions were added and the samples were centrifuged to remove unwanted RNA. Elution Buffer was finally added to remove the desired RNA from the beads.

Checking Quality and Quantity of RNA, Labeling Microarrays

In order to check for the presence of RNA, an agarose gel was run via electrophoresis. Once the presence of RNA at a sufficient level was detected, cDNA preparations for both the reference and experimental conditions were synthesized and the RNA templates were degraded. The cDNA was concentrated using the QiAquick Purification Kit (Qiagen, Valencia, CA). Figure 1 demonstrates the experimental procedure concerning Microarray labeling with the Genisphere Array 350 Kit (Genisphere, Hatfield, PA).

Analysis

Analysis was performed on previously obtained data from Drs. DeBerry and Lee using MagicTool.

Results

Microarray typing is a very efficient lab technique in that they are quite cost-efficient as they enable scientists to study the expression of thousands of genes at a time. The technique is now very commonly used in molecular biology and medical labs, since it allows entire genomes to be explored at once (Hedge et al. 2000). This is a much more sophisticated technique compared to that of Northern Blotting, which only allows one gene or DNA expression product to be explored at a time (Weaver, 2008). Microarrays can be used for various comparative analyses of anything from different gene expression levels in tumors used to design more personalized treatments for cancer patients, to looking at the changes in gene expression levels under specific and controlled growth conditions. These types of analyses are better known as gene expression profiling. They can also be employed to determine the relatedness of different species (Hedge et al., 2000; Schena, et al., 1995).

Yeast, Saccharomyces cerevisiae, is a model organism whose genome has been previously sequenced. It is fascinating that under aerobic and anaerobic growth conditions, the genes of this organism are expressed at different levels. It is the induction and repression of certain genes that allow scientists to investigate what is occurring during specific conditions and conditions of growth. It is intriguing to look at well known genes such as phosphoenoxypropyrate carboxykinase (PCK1), an enzyme that is key to gluconeogenesis. PCK1 is an enzyme in yeast that catalyzes early gluconeogenic reactions while its transcription is repressed by glucose (Haurie, et al., 2001).

The simplicity of using a microarray is something that can be done even in the undergraduate laboratory. In this experiment, *Saccharomyces cerevisiae,* gene expression was explored during the diauxic shift. When the yeast switch from anaerobic metabolism to aerobic metabolism, a shift in gene expression is observed and various genes are induced or repressed. Information gained from such observations can provide valuable insight for scientists seeking to determine certain genes’ biological roles in the organism (DeRisi, et al., 1997).

Preparing the Total Yeast RNA

The total yeast RNA was then isolated using an Ambion RiboPure Yeast Kit (Ambion, Austin, Texas). The yeast pellets were resuspended, transferred into a tube containing cold Zirconia beads, and subsequently vortexed to mix the yeast solution throughout the bead chamber. Binding Buffer was then used to bind the RNA to the beads. Several sub-saturating wash solutions were added and the samples were centrifuged to remove unwanted RNA. Elution Buffer was finally added to remove the desired RNA from the beads.

Checking Quality and Quantity of RNA, Labeling Microarrays

In order to check for the presence of RNA, an agarose gel was run via electrophoresis. Once the presence of RNA at a sufficient level was detected, cDNA preparations for both the reference and experimental conditions were synthesized and the RNA templates were degraded. The cDNA was concentrated using the QiAquick Purification Kit (Qiagen, Valencia, CA). Figure 1 demonstrates the experimental procedure concerning Microarray labeling with the Genisphere Array 350 Kit (Genisphere, Hatfield, PA).

Analysis

Analysis was performed on previously obtained data from Drs. DeBerry and Lee using MagicTool.

Troubleshooting

- The absence of usable data from the microarray prepared by us may be due to a 10 minute pause in the protocol at too cool of a temperature during the second cDNA hybridization.
- Another possible reason is that too much of the cDNA was removed from the microarray slide during either of the washes.
- These possibilities could be further explored by repeating the experiment, not allowing any non-specified breaks in the protocol to occur and centrifuging the slide at a slower speed when washing.

Discussion

- Yeast cells anaerobically ferment glucose to ethanol to make ATP in the presence of sufficient glucose. As the depletion of available glucose, they begin to metabolize the stored ethanol aerobically. Metabolizing ethanol involves converting it to pyruvate and subsequently acetyl-CoA to enter the Citric Acid Cycle.
- High-energy electrons are harvested and transported to the Electron Transport Chain (ETC). The ETC uses these to pump protons out of the mitochondrial matrix creating an electro-chemical gradient utilized by ATP synthase to convert ADP to ATP.
- Oxaloacetate (OAA) formed in the CAC is converted to phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxykinase (PCK1). PEP can enter gluconeogenesis to ultimately make more glucose.
- Expected, we found multiple genes active in gluconeogenesis and the Citric Acid Cycle that were substantially upregulated in *Saccharomyces cerevisiae* after the diauxic shift. This is logical because these processes become the main source of ATP during yeast aerobic metabolism. Stimulating PCK1 to convert OAA to PEP which can be entered into gluconeogenesis is efficient for yeast cells as they need to make more glucose in response to depleting levels that signaled the diauxic shift.

Acknowledgements

We are happy to thank Dr. Lee and Dr. DeBerry for sharing their microarray data, and Leah Herzog for assisting us throughout the laboratory experiments. This work was supported in part by Undergraduate Science Program Education Grant No. 52065323 from the Howard Hughes Medical Institute to Washington and Jefferson College.

Literature Cited